您的位置 首页 大学专业课程

复合导数运算法则

导数的加(减)法则是[f(x)+g(x)]’=f(x)’+g(x)’;乘法法则是[f(x)*g(x)]’=f(x)’*g(x)+g(x)’*f(x);除法法则是[f(x)/g(x)]’=[f(x)’*g(x)-g(x)’*f(x)]/g(x)^2,复合导数也是在此基础上进行运算的。

导数的加(减)法则是[f(x)+g(x)]’=f(x)’+g(x)’;乘法法则是[f(x)*g(x)]’=f(x)’*g(x)+g(x)’*f(x);除法法则是[f(x)/g(x)]’=[f(x)’*g(x)-g(x)’*f(x)]/g(x)^2,复合导数也是在此基础上进行运算的。复合函数对自变量的导数,等于已知函数对中间变量的导数,乘以中间变量对自变量的导数。

复合导数运算法则插图

导数是微积分中的重要基础概念,具有广泛的应用。

常见的导数公式有:

y=f(x)=c(c为常数),则f'(x)=0;

f(x)=x^n(n不等于0),f'(x)=nx^(n-1)(x^n表示x的n次方);

f(x)=sinxf'(x)=cosx;

f(x)=cosxf'(x)=-sinx;

热力学第零定律的内容

若两个热力学系统中的任何一个系统都和第三个热力学系统处于热平衡状态,那么,这两个热力学系统也必定处于热平衡。这一结论称为热力学第零定律,该定律中所说的热力学系统是指由大量分子、原子组成的物体或物体系。

f(x)=a^x,f'(x)=a^xlna(a>0且a不等于1,x>0);

f(x)=e^x,f'(x)=e^x;

f(x)=logaX,f'(x)=1/xlna(a>0且a不等于1,x>0);

f(x)=lnx,f'(x)=1/x(x>0);

f(x)=tanx,f'(x)=1/cos^2x;

f(x)=cotx,f'(x)=-1/sin^2x;

不是所有的函数都可以求导;可导的函数一定连续,但连续的函数不一定可导(如y=|x|在y=0处不可导)。

导数是微积分中的重要基础概念。当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f'(x0)或df(x0)/dx。

热力学零度可以达到吗

绝对零度是指物体分子静止不动(不发生热运动)时的温度,而要物体分子热运动停止,分子间距要非常小(差不多接触),但由于分子间斥力的作用,这种情况不可能达到。分子间距越小,斥力表现的越明显。所以说绝对零度只能无限接近而不能达到。

免责声明:文章内容不代表本站立场,本站不对其内容的真实性、完整性、准确性给予任何担保、暗示和承诺,仅供读者参考,文章版权归原作者所有。如本文内容影响到您的合法权益(内容、图片等),请及时联系本站,我们会及时删除处理。

作者: 791650988

为您推荐

历史的意义与价值是什么插图

历史的意义与价值是什么

历史的问题在于不断发现真的过去,在于用材料说话,让人如何在现实中可能成为可以讨论的问题。那么历史的意义与价值有哪些呢?

大数据技术与应用学的是什么内容插图

大数据技术与应用学的是什么内容

大数据技术与应用需要学习Hadoop实用技术、数据挖掘、机器学习、数据统计分析、高等数学等内容。在“大数据”背景之下,精通“大数据”的专业人才将成为企业最重要的业务角色,“大数据”从业人员薪酬持续增长,人才缺口巨大,就业前景十分可观。

课程目标的特点插图

课程目标的特点

课程目标有整体性,各级各类的课程目标是相互关联的,而不是彼此孤立的;阶段性,课程目标是一个多层次和全方位的系统,如小学课程目标、初中课程目标、高中课程目标;持续性,高年级课程目标是低年级课程目标的延续和深化等特点。

中国园林特点是什么插图

中国园林特点是什么

园林是人们为了游览娱乐的方便,用自己的双手创造风景的一种艺术。那么中国园林特点是什么呢?下面是小编整理的相关信息,让我们一起看一下吧。

义和团运动的性质是什么插图

义和团运动的性质是什么

义和团又称义和拳、义和团事件、庚子事变,拳匪、拳乱、庚子拳乱等。那么义和团运动的性质是什么呢?下面就和小编一起去看一下相关信息吧,希望可以给大家带来帮助。

返回顶部