1/sinx不定积分
1/sinx不定积分是ln|cscx – cotx| + C。微积分中,一个函数f的不定积分,或原函数,或反导数,是一个导数等于f的函数F,即F′=f。不定积分和定积分间的关系由微积分基本定理确定。其中F是f的不定积分。
tanx的不定积分是-ln|cosx|+C。在微积分中,一个函数f的不定积分,或原函数,或反导数,是一个导数等于f的函数F,即F′=f。不定积分和定积分间的关系由微积分基本定理确定。其中F是f的不定积分。
tanx的不定积分求解步骤
∫tanxdx
=∫sinx/cosx dx
=∫1/cosx d(-cosx)
cscx的不定积分
cscx的不定积分是ln|tan(x/2)|+C。在直角三角形中,斜边与某个锐角的对边的比值叫做该锐角的余割,记作cscx。余割与正弦的比值表达式互为倒数。余割函数为奇函数,且为周期函数。
因为∫sinxdx=-cosx(sinx的不定积分)
所以sinxdx=d(-cosx)
=-∫1/cosx d(cosx)(换元积分法)
令u=cosx,du=d(cosx)
=-∫1/u du=-ln|u|+C
=-ln|cosx|+C
对数函数的不定积分
对数函数没有特定的积分公式,一般按照分部积分来计算。对数函数ln(x)的不定积分是xlnx-x+C,(C是指任意常数)。㏒b(x)的不定积分是(xlnx-x)/lnb+C。