您的位置 首页 高中数学

不定积分换元公式

​设x=φ(t)是单调的,可导的函数,并且φ'(t)≠0,又设f[φ(t)]φ'(t)具有原函数,则有换元公式∫f(x)dx={∫f[φ(t)]φ'(t)dt} (t=φ^(-1)(x))。

不定积分分部积分法

​不定积分分部积分法是微积分学中的一类重要的、基本的计算积分的方法。它是由微分的乘法法则和微积分基本定理推导而来的。它的主要原理是将不易直接求结果的积分形式,转化为等价的易求出结果的积分形式的。

设x=φ(t)是单调的,可导的函数,并且φ'(t)≠0,又设f[φ(t)]φ'(t)具有原函数,则有换元公式∫f(x)dx={∫f[φ(t)]φ'(t)dt} (t=φ^(-1)(x))。

不定积分换元公式插图

医用高数和高数一样吗

医用高数和高数需要掌握的知识深浅程度以及具体应用方向不同。医用高数是为医务工作者和医学院校学生提供必备的数学知识和常用的计算方法,增强他们的数据处理能力、逻辑思维能力以及分析、解决实际问题的能力;为他们学习其他学科提供必要的数学基础。

定理(1)设f(u)具有原函数,u=φ(x)可导,则有换元公式∫f[φ(x)]φ'(x)dx=[∫f(u)du] (u=φ(x));

定理(2)设x=φ(t)是单调的,可导的函数,并且φ'(t)≠0.又设f[φ(t)]φ'(t)具有原函数,则有换元公式∫f(x)dx={∫f[φ(t)]φ'(t)dt} (t=φ^(-1)(x))。

注意:第二类与第一类换元积分法相反,第二类换元积分法就是由于积分∫f(x)dx不便计算,而改求∫f[φ(t)]φ'(t)dt。关键是:如何选择变量替换。

微分和积分的关系

微分和积分是相反的一对运算。微分是求变化率,积分是求变化总量。求加速度,用微分,即对速度进行求导。求路程,就是对速度在某个时间段内进行积分。

免责声明:文章内容不代表本站立场,本站不对其内容的真实性、完整性、准确性给予任何担保、暗示和承诺,仅供读者参考,文章版权归原作者所有。如本文内容影响到您的合法权益(内容、图片等),请及时联系本站,我们会及时删除处理。

作者: 791650988

为您推荐

高三数学不好要怎么补救插图

高三数学不好要怎么补救

很多小伙伴们在上学的时候数学都不怎么好,那么高三数学不好要怎么补救呢?下面是小编整理的相关信息,感兴趣的小伙伴们快来查阅吧。

等差数列公式通项公式是什么插图

等差数列公式通项公式是什么

等差数列是常见的一种数列。那等差数列公式通项公式?下面,就跟小编一起来了解一下吧。

等比数列前n项和公式是什么 如何运用插图

等比数列前n项和公式是什么 如何运用

很多小伙伴都会学到等比数列前n项和,那么它的公式是什么,如何运用呢?下面是小编整理的相关信息,感兴趣的小伙伴们快来查阅吧。

等比数列前n项和公式推导过程插图

等比数列前n项和公式推导过程

等比数列前n项和公式是怎么推导的?想必许多同学对这个问题存有疑惑。下面,就跟小编一起来看看吧。

常见的泰勒公式展开式大全插图

常见的泰勒公式展开式大全

泰勒公式展开式都有哪些?下面,小编整理了一些常见的泰勒公式展开式,希望对你们有帮助。

返回顶部